Coloring triangle-free rectangular frame intersection graphs with O(log log n) colors

Tomasz Krawczyk (speaker) Arkadiusz Pawlik Bartosz Walczak

{krawczyk, pawlik, walczak}@tcs.uj.edu.pl

Forum Informatyki Teoretycznej Toruń, 11-14 April, 2013

(日) (中) (日) (日) (日) (日) (日)

 \mathcal{S} — a set of compact, arcwise connected objects in the plane.

Geometric intersection graph of S: vertices \leftrightarrow objects, edges \leftrightarrow intersecting objects.

・ロット 全部 マート・ キョン

3

 \mathcal{S} — a set of compact, arcwise connected objects in the plane.

Geometric intersection graph of S: vertices \leftrightarrow objects, edges \leftrightarrow intersecting objects.

・ロット 全部 マート・ キョン

3

chromatic number - upper bounds

Upper bounds:

- string graphs O(log^{log ω} n) Fox, Pach, 2013
 - Separator Theorem for string graphs,
- segment graphs $O(\log n)$ Suk, 2012
 - segments piercing a common line have bounded chromatic number,

Comments:

nothing better than O(log n) was known.

(日) (中) (日) (日) (日) (日) (日)

Lower bounds:

- Ω(log log n) Pawlik, Kozik, T.K., Lasoń, Micek, Walczak, Trotter, 2012
 - triangle-free segment/string graphs,
 - objects obtained by horizontal scaling, vertical scaling, and translation of some fixed object (but not rectangles),

• rectangles – 3ω – Kostochka.

Comments:

• obtained via on-line coloring games on intervals in the line!.

Theorem (T.K., Pawlik, Walczak, 2012)

Every triangle-free intersection graph of frames with n vertices can be colored with $O(\log \log n)$ colors.

Comments:

- the first algorithm that beats O(log n) bound,
- describes precisely the structure of frame intersection graphs,
- uses on-line coloring algorithms.

Problems:

- replace triangle-free with K_d-free,
- extend the method on segment graphs, L-shaped graphs,

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Iimitations of our method?

Theorem (Kostochka, Kratochvíl, 1997)

Every K_{ω} -free overlap graph can be colored with $50 \cdot 2^{\omega}$ colors!

・ロッ ・雪 ・ ・ ヨ ・

3

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.
- Algorithm colors intervals (immediately and irrevocably) so that no two overlapping intervals have the same color.

 K_{ω} -free overlap coloring game:

- played by Presenter and Algorithm in rounds,
- Presenter builds a K_{ω} -free overlap graph:
 - one interval per round,
 - presentation order consistent with left-endpoints relation.
- Algorithm colors intervals (immediately and irrevocably) so that no two overlapping intervals have the same color.

Observation (Pawlik, Kozik, T.K., Lasoń, Micek, Walczak, Trotter, 2012)

If Presenter has a strategy to force Algorithm to use c colors in h rounds of K_{ω} -free overlap coloring game

₩

(ロ) (部) (注) (注) (注)

There is a K_{ω} -free frame intersection graph with $2^{poly(h)}$ vertices and chromatic number at least c.

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

round 1

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

round 1

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

round 2 round 1

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

round 2 round 1

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

round 2 round 1

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

round 2 Free for the second se

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

▲日 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ の Q @

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ = 三 - のへで

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(や)

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

h-universal graph – 'encodes' all possible moves of Presenter in the first *h* rounds of K_{ω} -free o.c. game.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Correspondence: On-line algorithms - Proper colorings.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三回 - のへで

Correspondence: On-line algorithms - Proper colorings.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Correspondence: On-line algorithms - Proper colorings.

Correspondence: On-line algorithms - Proper colorings.

Observation (Pawlik, Kozik, T.K., Lasoń, Micek, Walczak, Trotter, 2012) There is a strategy for Presenter that forces Algorithm to use log h

colors in h rounds of the triangle-free o.c. game.

Comments:

• there are triangle-free frame intersection graphs (universal graphs) with n vertices and chromatic number $\Omega(\log \log n)$,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

• universal graphs can be represented also by segments in the plane.

On-line algorithms from overlap coloring games are also useful in frame coloring.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Intersection types:

A family \mathcal{F} of frames is rightward-directed (leftward-, upward-, downward-directed) if the intersection of every two frames from \mathcal{F} is rightward-directed (leftward-, upward-, downward-directed).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Theorem (T.K., Pawlik, Walczak, 2012)

Every K_{ω} -free family of frames \mathcal{F} can be partitioned into $f(\omega)$ componentwise directed subfamilies.

Theorem (T.K., Pawlik, Walczak, 2012)

Every K_{ω} -free family of frames \mathcal{F} can be partitioned into $f(\omega)$ componentwise directed subfamilies.

- Projections of every two frames on OY-axis are either nested or disjoint,
- encode a 'partial' overlap coloring game (Presenter's power is limited).

Comments:

• encode a 'partial' overlap coloring game (Presenter's power is limited).

- Projections of every two frames on OY-axis are either nested or disjoint,
- encode a 'partial' overlap coloring game (Presenter's power is limited).

Comments:

• encode a 'partial' overlap coloring game (Presenter's power is limited).

- Projections of every two frames on OY-axis are either nested or disjoint,
- encode a 'partial' overlap coloring game (Presenter's power is limited).

Comments:

• encode a 'partial' overlap coloring game (Presenter's power is limited).

- Projections of every two frames on OY-axis are either nested or disjoint,
- encode a 'partial' overlap coloring game (Presenter's power is limited).

Comments:

• encode a 'partial' overlap coloring game (Presenter's power is limited).

- Projections of every two frames on OY-axis are either nested or disjoint,
- encode a 'partial' overlap coloring game (Presenter's power is limited).

Comments:

• encode a 'partial' overlap coloring game (Presenter's power is limited).

- Projections of every two frames on OY-axis are either nested or disjoint,
- encode a 'partial' overlap coloring game (Presenter's power is limited).

Comments:

• encode a 'partial' overlap coloring game (Presenter's power is limited).

- Projections of every two frames on OY-axis are either nested or disjoint,
- encode a 'partial' overlap coloring game (Presenter's power is limited).

Comments:

• encode a 'partial' overlap coloring game (Presenter's power is limited).

Coloring universal graphs:

- h-universal graph overlap game graph that encodes the first h rounds of the game, (2^{poly(h)} vertices)
- use on-line algorithm! O(log h) colors.
- the chromatic number of universal graph is O(log log n).

・ロッ ・雪 ・ ・ ヨ ・

3

- introduced by Sleator and Tarjan, 1983,
- a partition of a rooted tree into heavy paths,
- $w_1 \in P_1 \implies |w_i| \leq |w_1|$
- if a path from the root to a leaf intersects k heavy paths, then the tree contains at least ~ 2^k vertices.

- introduced by Sleator and Tarjan, 1983,
- a partition of a rooted tree into heavy paths,
- $w_1 \in P_1 \implies |w_i| \leq |w_1|$
- if a path from the root to a leaf intersects k heavy paths, then the tree contains at least ~ 2^k vertices.

- heavy-light decomposition,
- color vertices in each heavy paths (overlap graph) (first coordinate)
- use modified on-line algorithm,
- if the k-th color is used then the path from the root to the vertex intersects at least ∽ 2^k heavy paths,
- the graph contains at least $\sim 2^{2^k}$ vertices.

- heavy-light decomposition,
- color vertices in each heavy paths (overlap graph) (first coordinate)
- use modified on-line algorithm,
- if the k-th color is used then the path from the root to the vertex intersects at least ∽ 2^k heavy paths,
- the graph contains at least $\sim 2^{2^k}$ vertices.

- heavy-light decomposition,
- color vertices in each heavy paths (overlap graph) (first coordinate)
- use modified on-line algorithm,
- if the k-th color is used then the path from the root to the vertex intersects at least ∽ 2^k heavy paths,
- the graph contains at least $\sim 2^{2^k}$ vertices.

- heavy-light decomposition,
- color vertices in each heavy paths (overlap graph) (first coordinate)
- use modified on-line algorithm,
- if the k-th color is used then the path from the root to the vertex intersects at least ∽ 2^k heavy paths,
- the graph contains at least $\sim 2^{2^k}$ vertices.

- heavy-light decomposition,
- color vertices in each heavy paths (overlap graph) (first coordinate)
- use modified on-line algorithm,
- if the k-th color is used then the path from the root to the vertex intersects at least ∽ 2^k heavy paths,
- the graph contains at least $\sim 2^{2^k}$ vertices.

ション ふゆ くち くち くち くち

- heavy-light decomposition,
- color vertices in each heavy paths (overlap graph) (first coordinate)
- use modified on-line algorithm,
- if the k-th color is used then the path from the root to the vertex intersects at least ∽ 2^k heavy paths,
- the graph contains at least $\sim 2^{2^k}$ vertices.

ション ふゆ くち くち くち くち

Theorem (T.K., Pawlik, Walczak, 2012)

- There is a strategy for Algorithm that uses $O(\log k)$ colors in k rounds of the triangle-free overlap coloring game.
- The above strategy can be adapted to work also with heavy-light decomposition.
- We can color triangle-free frame intersection graph with n vertices using O(log log n) colors.

Question:

 Is there a strategy for Algorithm in K_ω-free overlap coloring game that uses O(log n) colors?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の < @

Theorem (T.K., Pawlik, Wlaczak, 2013)

There is a strategy for Algorithm that uses $O(\log n)$ colors provided Presenter builds clean overlap graphs.

Theorem (Kostochka, Kratochvíl, 1997)

Every K_{ω} overlap graph can be colored with $50 \cdot 2^{\omega}$ colors!

Theorem (Kostochka, Milans, 2010) Every K_{ω} clean overlap graph can be colored with $2\omega - 1$ colors!

Questions:

- Does every K_{ω} -free segment graph (L-shaped intersection graph) partitions into $f(\omega)$ overlap game graphs?
- Does every segment graph with high chromatic number contains a large (of linear size) overlap game graph?
- (Fox, Pach) Does every K_ω-free segment/string graph contains an independent set of linear size (cn for some c > 0)?
- Does every K_ω-free frame intersection graph contains an independent set of linear size (*cn* for some c > 0)?